
Oracle9i: PL/SQL Fundamentals

Additional Practices

40055GC11
Production 1.1
November 2001
D34070

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate III (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Authors

Priya Nathan

Technical Contributors
and Reviewers

Anna Atkinson
Cesljas Zarco
Chaya Rao
Coley William
Daniel Gabel
Dr. Christoph Burandt
Helen Robertson
Judy Brink
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Nagavalli Pataballa
Robert Squires
Sarah Jones
Stefan Lindblad
Sue Onraet
Susan Dee

Publisher
May Lonn Chan-Villareal

Preface

Curriculum Map

Introduction
Course Objectives I-2
About PL/SQL I-3
PL/SQL Environment I-4
Benefits of PL/SQL I-5
Summary I-10

1 Declaring Variables
Objectives 1-2
PL/SQL Block Structure 1-3
Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5
Program Constructs 1-6
Use of Variables 1-7
Handling Variables in PL/SQL 1-8
Types of Variables 1-9
Using iSQL*Plus Variables Within PL/SQL Blocks 1-10
Types of Variables 1-11
Declaring PL/SQL Variables 1-12
Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14
Variable Initialization and Keywords 1-15
Scalar Data Types 1-17
Base Scalar Data Types 1-18
Scalar Variable Declarations 1-22
The %TYPE Attribute 1-23
Declaring Variables with the %TYPE Attribute 1-24
Declaring Boolean Variables 1-25
Composite Data Types 1-26
LOB Data Type Variables 1-27
Bind Variables 1-28
Using Bind Variables 1-30
Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33
Practice 1 Overview 1-35

Contents

iii

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data Type Conversion 2-10
Nested Blocks and Variable Scope 2-13
Identifier Scope 2-15
Qualify an Identifier 2-16
Determining Variable Scope 2-17
Operators in PL/SQL 2-18
Programming Guidelines 2-20
Indenting Code 2-21
Summary 2-22
Practice 2 Overview 2-23

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-14
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

iv

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
IF-THEN-ELSIF Statement Execution Flow 4-9
IF-THEN-ELSIF Statements 4-11
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX BY Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of INDEX BY Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

v

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-9
Opening the Cursor 6-11
Fetching Data from the Cursor 6-12
Closing the Cursor 6-14
Explicit Cursor Attributes 6-15
The %ISOPEN Attribute 6-16
Controlling Multiple Fetches 6-17
The %NOTFOUND and %ROWCOUNT Attributes 6-18
Example 6-20
Cursors and Records 6-21
Cursor FOR Loops 6-22
Cursor FOR Loops Using Subqueries 6-24
Summary 6-26
Practice 6 Overview 6-27

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8

vi

Predefined Exceptions 8-11
Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13
Functions for Trapping Exceptions 8-14
Trapping User-Defined Exceptions 8-16
User-Defined Exceptions 8-17
Calling Environments 8-18
Propagating Exceptions 8-19
The RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22
Summary 8-23
Practice 8 Overview 8-24

A Practice Solutions

B Table Description and Data

C REF Cursors

Additional Practices

Additional Practice Solutions

vii

Additional
Practices

Oracle9i: PL/SQL Fundamentals Additional Practices - 3

Additional Practices Overview
These additional practices are provided as a supplement to the course Oracle9i: PL/SQL
Fundamentals. In these practices, you apply the concepts that you learned in Oracle9i: PL/SQL
Fundamentals.

These additional practices provide supplemental practice in declaring variables, writing executable
statements, interacting with the Oracle server, writing control structures, and working with composite
data types, cursors and handle exceptions. The tables used in this portion of the additional practices
include EMPLOYEES, JOBS, JOB_HISTORY, and DEPARTMENTS.

Oracle9i: PL/SQL Fundamentals Additional Practices - 4

ENTITY RELATIONSHIP DIAGRAM

Human Resources

Oracle9i: PL/SQL Fundamentals Additional Practices - 5

Note: These exercises can be used for extra practice when discussing how to declare variables and
write executable statements.

1. Evaluate each of the following declarations. Determine which of them are not legal and explain
why.

a. DECLARE

v_name,v_dept VARCHAR2(14);

b. DECLARE

v_test NUMBER(5);

c. DECLARE

V_MAXSALARY NUMBER(7,2) = 5000;

d. DECLARE

V_JOINDATE BOOLEAN := SYSDATE;

2. In each of the following assignments, determine the data type of the resulting expression.

a. v_email := v_firstname || to_char(v_empno);

b. v_confirm := to_date(’20-JAN-1999’, ’DD-MON-YYYY’);

c. v_sal := (1000*12) + 500

d. v_test := FALSE;

e. v_temp := v_temp1 < (v_temp2/ 3);

f. v_var := sysdate;

Oracle9i: PL/SQL Fundamentals Additional Practices - 6

3. DECLARE

v_custid NUMBER(4) := 1600;

v_custname VARCHAR2(300) := ’Women Sports Club’;

v_new_custid NUMBER(3) := 500;

BEGIN

DECLARE

v_custid NUMBER(4) := 0;

v_custname VARCHAR2(300) := ’Shape up Sports Club’;

v_new_custid NUMBER(3) := 300;

v_new_custname VARCHAR2(300) := ’Jansports Club’;

BEGIN

v_custid := v_new_custid;

v_custname := v_custname || ’ ’ || v_new_custname;

END;

v_custid := (v_custid *12) / 10;

END;
/

Evaluate the PL/SQL block above and determine the data type and value of each of the following
variables according to the rules of scoping:

a. The value of V_CUSTID at position 1 is:

b. The value of V_CUSTNAME at position 1 is:

c. The value of V_NEW_CUSTID at position 2 is:

d. The value of V_NEW_CUSTNAME at position 1 is:

e. The value of V_CUSTID at position 2 is:

f. The value of V_CUSTNAME at position 2 is:

Note: These exercises can be used for extra practice when discussing how to interact with the
Oracle server and write control structures.

4. Write a PL/SQL block to accept a year and check whether it is a leap year. For example, if the
year entered is 1990, the output should be “1990 is not a leap year.”

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be divisible
by 400.

1

2

Oracle9i: PL/SQL Fundamentals Additional Practices - 7

Test your solution with the following years:

5. a. For the exercises below, you will require a temporary table to store the results. You can either
create the table yourself or run the labAp_05.sql script that will create the table for you.
Create a table named TEMP with the following three columns:

b. Write a PL/SQL block that contains two variables, MESSAGE and DATE_WRITTEN.
Declare MESSAGE as VARCHAR2 data type with a length of 35 and DATE_WRITTEN as
DATE data type. Assign the following values to the variables:

Variable Contents

MESSAGE ‘This is my first PL/SQL program’
DATE_WRITTEN Current date

Store the values in appropriate columns of the TEMP table. Verify your results by querying the
TEMP table.

Column Name NUM_STORE CHAR_STORE DATE_STORE

Key Type

Nulls/Unique

FK Table

FK Column

Datatype Number VARCHAR2 Date

Length 7,2 35

1990 Not a leap year
2000 Leap year

1996 Leap year

1886 Not a leap year
1992 Leap year

1824 Leap year

Oracle9i: PL/SQL Fundamentals Additional Practices - 8

6. a. Store a department number in a iSQL*Plus substitution variable

b. Write a PL/SQL block to print the number of people working in that department.

Hint: Enable DBMS_OUTPUT in iSQL*Plus with SET SERVEROUTPUT ON.

7. Write a PL/SQL block to declare a variable called v_salary to store the salary of an employee. In
the executable part of the program, do the following:

a. Store an employee name in a iSQL*Plus substitution variable

b. Store his or her salary in the variable v_salary

c. If the salary is less than 3,000, give the employee a raise of 500 and display the message
'<Employee Name>’s salary updated' in the window.

d. If the salary is more than 3,000, print the employee’s salary in the format, '<Employee Name>
earns …...………'

e. Test the PL/SQL for the following last names:

Note: Undefine the variable that stores the employee’s name at the end of the script.

8. Write a PL/SQL block to store the salary of an employee in an iSQL*Plus substitution variable.
In the executable part of the program do the following:

• Calculate the annual salary as salary * 12.

• Calculate the bonus as indicated below:

• Display the amount of the bonus in the window in the following format:

‘The bonus is $………………..’

Annual Salary Bonus

>= 20,000 2,000

19,999 - 10,000 1,000

<= 9,999 500

LAST_NAME SALARY

Pataballa 4800

Greenberg 12000

Ernst 6000

Oracle9i: PL/SQL Fundamentals Additional Practices - 9

• Test the PL/SQL for the following test cases:

Note: These exercises can be used for extra practice when discussing how to work with composite
data types, cursors and handling exceptions.

9. a.. Write a PL/SQL block to store an employee number, the new department number, and the
percentage increase in the salary in iSQL*Plus substitution variables.

b. Update the department ID of the employee with the new department number, and update the
salary with the new salary. Use the EMP table for the updates. Once the update is complete,
display the message, 'Update complete' in the window. If no matching records are found, display
‘No Data Found’. Test the PL/SQL for the following test cases:

SALARY BONUS

5000 2000

1000 1000

15000 2000

EMPLOYEE_ID NEW_DEPARTMEN
T_ID

% INCREASE MESSAGE

100 20 2 Updation
Complete

10 30 5 No Data
found

126 40 3 Updation
Complete

Oracle9i: PL/SQL Fundamentals Additional Practices - 10

10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire
date in the window in the format shown in the sample output below:

11. Create a PL/SQL block to retrieve the last name and department ID of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE_ID is less than 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department IDs. Using a loop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_OUTPUT.PUT_LINE. Display these details for the first 15 employees in
the PL/SQL tables.

Oracle9i: PL/SQL Fundamentals Additional Practices - 11

12. a. Create a PL/SQL block that declares a cursor called DATE_CUR. Pass a parameter of DATE data
type to the cursor and print the details of all employees who have joined after that date.

DEFINE P_HIREDATE = 08-MAR-00

b. Test the PL/SQL block for the following hire dates: 08-MAR-00, 25-JUN-97, 28-SEP-98,
07-FEB-99.

13. Create a PL/SQL block to promote clerks who earn more than 3,000 to the job title SR CLERK
and increase their salary by 10%. Use the EMP table for this practice. Verify the results by
querying on the EMP table. Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

14. a. For the exercise below, you will require a table to store the results. You can create the
ANALYSIS table yourself or run the labAp_14a.sql script that creates the table for you.
Create a table called ANALYSIS with the following three columns:

b. Create a PL/SQL block to populate the ANALYSIS table with the information from the
EMPLOYEES table. Use an iSQL*Plus substitution variable to store an employee’s last name.

c. Query the EMPLOYEES table to find if the number of years that the employee has been with the
organization is greater than five, and if the salary is less than 3,500, raise an exception. Handle the
exception with an appropriate exception handler that inserts the following values into the
ANALYSIS table: employee last name, number of years of service, and the current salary.
Otherwise display Not due for a raise in the window. Verify the results by querying the
ANALYSIS table. Use the following test cases to test the PL/SQL block:

Column Name ENAME YEARS SAL

Key Type

Nulls/Unique

FK Table

FK Column

Datatype VARCHAR2 Number Number

Length 20 2 8,2

LAST_NAME MESSAGE

Austin Not due for a raise

Nayer Not due for a raise

Fripp Not due for a raise

Khoo Due for a raise

Oracle9i: PL/SQL Fundamentals Additional Practices - 12

Additional
Practice

Solutions

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 3

Additional Practice 1 and 2 Solutions

1. Evaluate each of the following declarations. Determine which of them are not legal and explain
why.

a. DECLARE

v_name,v_dept VARCHAR2(14);

This is illegal because only one identifier per declaration is allowed.

b. DECLARE

v_test NUMBER(5);

This is legal.

c. DECLARE

V_MAXSALARY NUMBER(7,2) = 5000;

This is illegal because the assignment operator is wrong. It should be :=.

d. DECLARE

V_JOINDATE BOOLEAN := SYSDATE;

This is illegal because there is a mismatch in the data types. A Boolean data type cannot
be assigned a date value. The data type should be date.

2. In each of the following assignments, determine the data type of the resulting expression.

a. v_email := v_firstname || to_char(v_empno);

Character string

b. v_confirm := to_date(’20-JAN-1999’, ’DD-MON-YYYY’);

Date

c. v_sal := (1000*12) + 500

Number

d. v_test := FALSE;

Boolean

e. v_temp := v_temp1 < (v_temp2/ 3);

Boolean

f. v_var := sysdate;

Date

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 4

Additional Practice 3 Solutions

3. DECLARE

v_custid NUMBER(4) := 1600;

v_custname VARCHAR2(300) := ’Women Sports Club’;

v_new_custid NUMBER(3) := 500;

BEGIN

DECLARE

v_custid NUMBER(4) := 0;

v_custname VARCHAR2(300) := ’Shape up Sports Club’;

v_new_custid NUMBER(3) := 300;

v_new_custname VARCHAR2(300) := ’Jansports Club’;

BEGIN

v_custid := v_new_custid;

v_custname := v_custname || ’ ’ || v_new_custname;

END;

v_custid := (v_custid *12) / 10;

END;

/

Evaluate the PL/SQL block above above and determine the data type and value of each of the
following variables, according to the rules of scoping:

a. The value of V_CUSTID at position 1 is:

300, and the data type is NUMBER

b. The value of V_CUSTNAME at position 1 is:

Shape up Sports Club Jansports Club, and the data type is VARCHAR2

c. The value of V_NEW_CUSTID at position 1 is:

500, and the data type is NUMBER (or INTEGER)

d. The value of V_NEW_CUSTNAME at position 1 is:

Jansports Club, and the data type is VARCHAR2

e. The value of V_CUSTID at position 2 is:

1920, and the data type is NUMBER

f. The value of V_CUSTNAME at position 2 is:

Women Sports Club, and the data type is VARCHAR2

1

2

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 5

Additional Practice 4 Solutions

4. Write a PL/SQL block to accept a year and check whether it is a leap year. For example, if the
year entered is 1990, the output should be “1990 is not a leap year”.

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be
divisible by 400.

Test your solution with the following years:

SET SERVEROUTPUT ON

DEFINE p_year = 1990

DECLARE

V_YEAR NUMBER(4) := &P_YEAR;

V_REMAINDER1 NUMBER(5,2);

V_REMAINDER2 NUMBER(5,2);

V_REMAINDER3 NUMBER(5,2);

BEGIN

V_REMAINDER1 := MOD(V_YEAR,4);

V_REMAINDER2 := MOD(V_YEAR,100);

V_REMAINDER3 := MOD(V_YEAR,400);

IF ((V_REMAINDER1 = 0 AND V_REMAINDER2 <> 0)
OR V_REMAINDER3 = 0) THEN

DBMS_OUTPUT.PUT_LINE(V_YEAR || ’ is a leap year’);

ELSE

DBMS_OUTPUT.PUT_LINE (V_YEAR || ’ is not a leap year’);

END IF;

END;

/

SET SERVEROUTPUT OFF

1990 Not a leap year
2000 Leap year

1996 Leap year

1886 Not a leap year
1992 Leap year

1824 Leap year

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 6

Additional Practice 5 Solutions

5. a. For the exercises below, you will require a temporary table to store the results. You can either
create the table yourself or run the labAp_05.sql script that will create the table for you.
Create a table named TEMP with the following three columns:

CREATE TABLE temp

(num_store NUMBER(7,2),

char_store VARCHAR2(35),

date_store DATE);

b. Write a PL/SQL block that contains two variables, MESSAGE and DATE_WRITTEN. Declare
MESSAGE as VARCHAR2 data type with a length of 35 and DATE_WRITTEN as DATE data
type. Assign the following values to the variables:

Variable Contents

MESSAGE ’This is my first PL/SQL program’
DATE_WRITTEN Current date

Store the values in appropriate columns of the TEMP table. Verify your results by querying
the TEMP table.
DECLARE

MESSAGE VARCHAR2(35);

DATE_WRITTEN DATE;

BEGIN

MESSAGE := ’This is my first PLSQL Program’;

DATE_WRITTEN := SYSDATE;

INSERT INTO temp(CHAR_STORE,DATE_STORE)

VALUES (MESSAGE,DATE_WRITTEN);

END;

/

SELECT * FROM TEMP;

Column Name NUM_STORE CHAR_STORE DATE_STORE

Key Type

Nulls/Unique

FK Table

FK Column

Datatype Number VARCHAR2 Date

Length 7,2 35

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 7

Additional Practice 6 and 7 Solutions
6. a. Store a department number in a iSQL*Plus substitution variable

DEFINE P_DEPTNO = 30

b. Write a PL/SQL block to print the number of people working in that department.

Hint: Enable DBMS_OUTPUT in iSQL*Plus with SET SERVEROUTPUT ON.

SET SERVEROUTPUT ON

DECLARE

V_COUNT NUMBER(3);

V_DEPTNO DEPARTMENTS.department_id%TYPE := &P_DEPTNO;

BEGIN

SELECT COUNT(*) INTO V_COUNT FROM employees

WHERE department_id = V_DEPTNO;

DBMS_OUTPUT.PUT_LINE (V_COUNT || ’ employee(s) work for
department number ’ ||V_DEPTNO);

END;

/

SET SERVEROUTPUT OFF

7. Write a PL/SQL block to declare a variable called v_salary to store the salary of an employee. In the
executable part of the program, do the following:

a. Store an employee name in a iSQL*Plus substitution variable

SET SERVEROUTPUT ON

DEFINE P_LASTNAME = Pataballa

b. Store his or her salary in the v_salary variable

c. If the salary is less than 3,000, give the employee a raise of 500 and display the message
'<Employee Name>’s salary updated' in the window.

d. If the salary is more than 3,000, print the employee’s salary in the format, '<Employee Name>
earns …...………'

e. Test the PL/SQL for the last names

Note: Undefine the variable that stores the employee’s name at the end of the script.

DECLARE

V_SALARY NUMBER(7,2);

V_LASTNAME EMPLOYEES.LAST_NAME%TYPE;

BEGIN

SELECT salary INTO V_SALARY

FROM employees

WHERE last_name = INITCAP(’&&P_LASTNAME’) FOR UPDATE of salary;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 8

Additional Practice 7 and 8 Solutions

V_LASTNAME := INITCAP(’&P_LASTNAME’);

IF V_SALARY < 3000 THEN

UPDATE employees SET salary = salary + 500

WHERE last_name = INITCAP(’&P_LASTNAME’) ;

DBMS_OUTPUT.PUT_LINE (V_LASTNAME || ’’’s salary updated’);

ELSE

DBMS_OUTPUT.PUT_LINE (V_LASTNAME || ’ earns ’ ||

TO_CHAR(V_SALARY));

END IF;

END;

/

SET SERVEROUTPUT OFF

UNDEFINE P_LASTNAME

8. Write a PL/SQL block to store the salary of an employee in an iSQL*Plus substitution variable. In
the executable part of the program do the following:

• Calculate the annual salary as salary * 12.

• Calculate the bonus as indicated below:

• Display the amount of the bonus in the window in the following format:

‘The bonus is $………………..’

SET SERVEROUTPUT ON

DEFINE P_SALARY = 5000

DECLARE

V_SALARY NUMBER(7,2) := &P_SALARY;

V_BONUS NUMBER(7,2);

V_ANN_SALARY NUMBER(15,2);

Annual Salary Bonus

>= 20,000 2,000

19,999 - 10,000 1,000

<= 9,999 500

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 9

Additional Practice 8 and 9 Solutions
BEGIN

V_ANN_SALARY := V_SALARY * 12;

IF V_ANN_SALARY >= 20000 THEN

V_BONUS := 2000;

ELSIF V_ANN_SALARY <= 19999 AND V_ANN_SALARY >=10000 THEN

V_BONUS := 1000;

ELSE

V_BONUS := 500;

END IF;

DBMS_OUTPUT.PUT_LINE (’The Bonus is $ ’ || TO_CHAR(V_BONUS));

END;

/

SET SERVEROUTPUT OFF

9. a. Write a PL/SQL block to store an employee number, the new department number and the
percentage increase in the salary in iSQL*Plus substitution variables.
SET SERVEROUTPUT ON

DEFINE P_EMPNO = 100

DEFINE P_NEW_DEPTNO = 10

DEFINE P_PER_INCREASE = 2

b. Update the department ID of the employee with the new department number, and update the
salary with the new salary. Use the EMP table for the updates. Once the update is complete,
display the message, ‘Update complete’ in the window. If no matching records are found, display
the message, ‘No Data Found’. Test the PL/SQL.
DECLARE

V_EMPNO emp.EMPLOYEE_ID%TYPE := &P_EMPNO;

V_NEW_DEPTNO emp.DEPARTMENT_ID%TYPE := & P_NEW_DEPTNO;

V_PER_INCREASE NUMBER(7,2) := & P_PER_INCREASE;

BEGIN

UPDATE emp

SET department_id = V_NEW_DEPTNO,

salary = salary + (salary *
V_PER_INCREASE/100)

WHERE employee_id = V_EMPNO;

IF SQL%ROWCOUNT = 0 THEN

DBMS_OUTPUT.PUT_LINE (’No Data Found’);

ELSE

DBMS_OUTPUT.PUT_LINE (’Update Complete’);

END IF;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 10

Additional Practice 10 Solutions

10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire
date in the window.

SET SERVEROUTPUT ON

DECLARE

CURSOR EMP_CUR IS

SELECT last_name,salary,hire_date FROM EMPLOYEES;

V_ENAME VARCHAR2(25);

V_SAL NUMBER(7,2);

V_HIREDATE DATE;

BEGIN

OPEN EMP_CUR;

FETCH EMP_CUR INTO V_ENAME,V_SAL,V_HIREDATE;

WHILE EMP_CUR%FOUND

LOOP

IF V_SAL > 15000 AND V_HIREDATE >= TO_DATE(’01-FEB-1988’,’DD-MON-
YYYY’) THEN

DBMS_OUTPUT.PUT_LINE (V_ENAME || ’ earns ’ || TO_CHAR(V_SAL)|| ’
and joined the organization on ’ || TO_DATE(V_HIREDATE,’DD-Mon-
YYYY’));

END IF;

FETCH EMP_CUR INTO V_ENAME,V_SAL,V_HIREDATE;

END LOOP;

CLOSE EMP_CUR;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 11

Additional Practice 11 Solutions

11. Create a PL/SQL block to retrieve the last name and department ID of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE_ID is less than 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department IDs. Using a loop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_OUTPUT.PUT_LINE. Display these details for the first 15 employees in
the PL/SQL tables.

SET SERVEROUTPUT ON

DECLARE

TYPE Table_Ename is table of employees.last_name%TYPE

INDEX BY BINARY_INTEGER;

TYPE Table_dept is table of employees.department_id%TYPE

INDEX BY BINARY_INTEGER;

V_Tename Table_Ename;

V_Tdept Table_dept;

i BINARY_INTEGER :=0;

CURSOR C_Namedept IS SELECT last_name,department_id from employees

WHERE employee_id < 115;

V_COUNT NUMBER := 15;

BEGIN

FOR emprec in C_Namedept

LOOP

i := i +1;

V_Tename(i) := emprec.last_name;

V_Tdept(i) := emprec.department_id;

END LOOP;

FOR i IN 1..v_count

LOOP

DBMS_OUTPUT.PUT_LINE (’Employee Name: ’ || V_Tename(i) ||

’ Department_id: ’ || V_Tdept(i));

END LOOP;

END;

/

SET SERVEROUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 12

Additional Practice 12 Solutions

12. a. Create a PL/SQL block that declares a cursor called DATE_CUR. Pass a parameter of DATE data
type to the cursor and print the details of all employees who have joined after that date.

SET SERVEROUTPUT ON

DEFINE P_HIREDATE = 08-MAR-00

b. Test the PL/SQL block for the following hire dates: 08-MAR-00, 25-JUN-97, 28-SEP-98,
07-FEB-99.

DECLARE

CURSOR DATE_CURSOR(JOIN_DATE DATE) IS

SELECT employee_id,last_name,hire_date FROM employees

WHERE HIRE_DATE >JOIN_DATE ;

V_EMPNO employees.employee_id%TYPE;

V_ENAME employees.last_name%TYPE;

V_HIREDATE employees.hire_date%TYPE;

V_DATE employees.hire_date%TYPE := ’&P_HIREDATE’;

BEGIN

OPEN DATE_CURSOR(V_DATE);

LOOP

FETCH DATE_CURSOR INTO V_EMPNO,V_ENAME,V_HIREDATE;

EXIT WHEN DATE_CURSOR%NOTFOUND;

DBMS_OUTPUT.PUT_LINE (V_EMPNO || ’ ’ || V_ENAME || ’ ’ ||

V_HIREDATE);

END LOOP;

END;

/

SET SERVEROUTPUT OFF;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 13

Additional Practice 13 Solutions

13. Create a PL/SQL block to promote clerks who earn more than 3,000 to SR. CLERK and increase
their salary by 10%. Use the EMP table for this practice. Verify the results by querying on the EMP
table.

Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

DECLARE

CURSOR C_Senior_Clerk IS

SELECT employee_id,job_id FROM emp

WHERE job_id = ’ST_CLERK’ AND salary > 3000

FOR UPDATE OF job_id;

BEGIN

FOR V_Emrec IN C_Senior_Clerk

LOOP

UPDATE emp

SET job_id = ’ST_CLERK’,

salary = 1.1 * salary

WHERE CURRENT OF C_Senior_Clerk;

END LOOP;

COMMIT;

END;

/

SELECT * FROM emp;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 14

Additional Practice 14 Solutions

14. a. For the exercise below, you will require a table to store the results. You can create the ANALYSIS
table yourself or run the labAp_14a.sql script that creates the table for you. Create a table
called ANALYSIS with the following three columns:

CREATE TABLE analysis

(ename Varchar2(20),

years Number(2),

sal Number(8,2));

b. Create a PL/SQL block to populate the ANALYSIS table with the information from the EMPLOYEES
table. Use an iSQL*Plus substitution variable to store an employee’s last name.

SET SERVEROUTPUT ON

DEFINE P_ENAME = Austin

c. Query the EMPLOYEES table to find if the number of years that the employee has been with the
organization is greater than five, and if the salary is less than 3,500, raise an exception. Handle the
exception with an appropriate exception handler that inserts the following values into the ANALYSIS
table: employee last name, number of years of service, and the current salary. Otherwise display Not
due for a raise in the window. Verify the results by querying the ANALYSIS table. Test the
PL/SQL block.

DECLARE

DUE_FOR_RAISE EXCEPTION;

V_HIREDATE EMPLOYEES.HIRE_DATE%TYPE;

V_ENAME EMPLOYEES.LAST_NAME%TYPE := INITCAP(’& P_ENAME’);

V_SAL EMPLOYEES.SALARY%TYPE;

V_YEARS NUMBER(2);

Column Name ENAME YEARS SAL

Key Type

Nulls/Unique

FK Table

FK Column

Datatype VARCHAR2 Number Number

Length 20 2 8,2

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 15

Additional Practice 14 Solutions (continued)

BEGIN

SELECT LAST_NAME,SALARY,HIRE_DATE

INTO V_ENAME,V_SAL,V_HIREDATE

FROM employees WHERE last_name = V_ENAME;

V_YEARS := MONTHS_BETWEEN(SYSDATE,V_HIREDATE)/12;

IF V_SAL < 3500 AND V_YEARS > 5 THEN

RAISE DUE_FOR_RAISE;

ELSE

DBMS_OUTPUT.PUT_LINE (’Not due for a raise’);

END IF;

EXCEPTION

WHEN DUE_FOR_RAISE THEN

INSERT INTO ANALYSIS(ENAME,YEARS,SAL)

VALUES (V_ENAME,V_YEARS,V_SAL);

END;

/

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 16

