Oracle9i: PL/SQL Fundamentals

Additional Practices

40055GC11
Production 1.1
November 2001
D34070

ORACLE"

Authors
Priya Nathan

Technical Contributors
and Reviewers

Anna Atkinson
Cedjas Zarco
Chaya Rao

Coley William
Daniel Gabel

Dr. Christoph Burandt
Helen Robertson
Judy Brink

Laszlo Czinkoczki
Laura Pezzini
Linda Boldt

Marco Verbeek
Nagavalli Pataballa
Robert Squires
Sarah Jones

Stefan Lindblad
Sue Onraet

Susan Dee

Publisher
May Lonn Chan-Villareal

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure and
is also protected by copyright law. Reverse engineering of the software is prohibited.
If this documentation is delivered to a U.S. Government Agency of the Department of
Defense, then it is delivered with Restricted Rights and the following legend is
applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Ill (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered trademarks
of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Preface
Curriculum Map

Introduction

Course Obijectives 1-2
About PL/SQL 1-3
PL/SQL Environment 1-4
Benefits of PL/SQL I-5
Summary 1-10

1 Declaring Variables
Objectives 1-2
PL/SQL Block Structure 1-3
Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5
Program Constructs 1-6
Use of Variables 1-7
Handling Variables in PL/SQL 1-8
Types of Variables 1-9
Using iSQL*Plus Variables Within PL/SQL Blocks 1-10
Types of Variables 1-11
Declaring PL/SQL Variables 1-12
Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14
Variable Initialization and Keywords 1-15
Scalar Data Types 1-17
Base Scalar Data Types 1-18
Scalar Variable Declarations 1-22
The %TYPE Attribute 1-23
Declaring Variables with the %TYPE Attribute 1-24
Declaring Boolean Variables 1-25
Composite Data Types 1-26
LOB Data Type Variables 1-27
Bind Variables 1-28
Using Bind Variables 1-30
Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33
Practice 1 Overview 1-35

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data Type Conversion 2-10
Nested Blocks and Variable Scope 2-13
Identifier Scope 2-15
Qualify an Identifier 2-16
Determining Variable Scope 2-17
Operators in PL/SQL 2-18
Programming Guidelines 2-20
Indenting Code 2-21
Summary 2-22
Practice 2 Overview 2-23

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-14
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
IF-THEN-ELSIF Statement Execution Flow 4-9
IF-THEN-ELSIF Statements 4-11
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX BY Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of INDEX BY Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-9
Opening the Cursor 6-11
Fetching Data from the Cursor 6-12
Closing the Cursor 6-14
Explicit Cursor Attributes 6-15
The %ISOPEN Attribute 6-16
Controlling Multiple Fetches 6-17
The %NOTFOUND and %ROWCOUNT Attributes 6-18
Example 6-20
Cursors and Records 6-21
Cursor FOR Loops 6-22
Cursor FOR Loops Using Subqueries 6-24
Summary 6-26
Practice 6 Overview 6-27

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8

Vi

Predefined Exceptions 8-11

Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13

Functions for Trapping Exceptions 8-14

Trapping User-Defined Exceptions 8-16
User-Defined Exceptions 8-17

Calling Environments 8-18

Propagating Exceptions 8-19

The RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22

Summary 8-23

Practice 8 Overview 8-24

Practice Solutions

Table Description and Data
REF Cursors

Additional Practices

Additional Practice Solutions

Vii

Additional
Practices

Additional Practices Overview

These additional practices are provided as a supplement to the course Oracle9i: PL/SQL
Fundamentals. In these practices, you apply the concepts that you learned in Oraclei: PL/SQL
Fundamentals.

These additional practices provide supplemental practice in declaring variables, writing executable
statements, interacting with the Oracle server, writing control structures, and working with composite
datatypes, cursors and handle exceptions. The tables used in this portion of the additional practices
include EMPLOYEES, JOBS, JOB_HI STORY, and DEPARTMENTS.

Oracle9i: PL/SQL Fundamentals Additional Practices - 3

ENTITY RELATIONSHIP DIAGRAM

Human Resources

HR

JOB_HISTORY
employee_id
start_date
end date
joo_id
department_id

DEPARTMENTS
department_id
department_name
manage”_id
location_id

h

N

JOBS

job_id

jok_title
min_salary

max_salary

EMPLOYEES
employee_id
first_name
last_name
email
phone number
hire_date
job_id
salary
commission_pct
manage_id
department_id

LOCATIONS
location_id
street_address
postal_code
city
state province
country_id

-

COUNTRIES
country_id
country_name
region_id

4

REGIONS
region_id
region_name

Oracle9i: PL/SQL Fundamentals Additional Practices - 4

Note: These exercises can be used for extra practice when discussing how to declare variables and
write executable statements.

1. Evauate each of the following declarations. Determine which of them are not legal and explain

why.
a DECLARE
v_hane, v_dept VARCHAR2(14) ;
b. DECLARE
v_test NUMBER(5) ;
c. DECLARE
V_MAXSALARY NUMBER(7, 2) = 5000;
d. DECLARE
V_JO NDATE BOCOLEAN : = SYSDATE;
2. In each of the following assignments, determine the data type of the resulting expression.
a v emil :=v firstnane || to_char(v_enpno);
b. v _confirm:= to_date(’20-JAN- 1999, ' DD MON- YYYY');
c. v_sal :=(1000*12) + 500
d v_test := FALSE
e v_tenp :=v_tenpl < (v_tenmp2/ 3);
f. v_var := sysdate;

Oracle9i: PL/SQL Fundamentals Additional Practices -5

3. DECLARE

v_custid NUVBER(4) : = 1600;
V_cust nane VARCHAR2(300) := 'Wnen Sports Cub’;
v_new custid NUMBER(3) := 500;
BEG N
DECLARE
v_custid NUVBER(4) := O;
v_custnanme VARCHAR2(300) := 'Shape up Sports Cub’;
v_new custid NUMBER(3) := 300;
v_new _cust name VARCHAR2(300) := 'Jansports dub’;
BEG N
v_custid := v_new custid;
v_custnane := v_custnanme || * ' || v_new_custnane;
© >
END;
v_custid := (v_custid *12) / 10;
D=
END;

/

Evaluate the PL/SQL block above and determine the data type and value of each of the following
variables according to the rules of scoping:

a. Thevaueof V_CUSTI Dat position 1 is:
Thevaue of V_CUSTNAME at position Lis:
Thevdueof V_NEW CUSTI D at position 2is:
Thevdue of V_NEW CUSTNAME at position 1is:
Thevaueof V_CUSTI Dat position 2is:

The vaue of V_CUSTNAME at position 2 is:

-~ 0 a0 T

Note: These exercises can be used for extra practice when discussing how to interact with the
Oracle server and write control structures.

4. WriteaPL/SQL block to accept ayear and check whether it isaleap year. For example, if the
year entered is 1990, the output should be “1990 is not a leap year.”

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be divisible
by 400.

Oracle9i: PL/SQL Fundamentals Additional Practices - 6

Test your solution with the following years:

1990 Not aleap year
2000 Leap year

1996 Leap year

1886 Not aleap year
1992 Leap year

1824 Leap year

old 2:W_YEAR NUMBEER(4) = &F_ YEAR,
new 2. V_YTEAR NUMBEE{4) = 1990,
1990 13 not a leap vear

PLIZQL procedure successfully completed.

5.a For the exercises below, you will require atemporary table to store the results. Y ou can either
create the table yourself or runthel abAp_05. sql script that will create the table for you.
Create atable named TEMP with the following three columns:

Column Name NUM_STORE CHAR_STORE DATE_STORE
Key Type
NullsUnique
FK Table

FK Column
Datatype Nunber VARCHAR2 Dat e
Length 7,2 35

b. Writea PL/SQL block that contains two variables, MESSAGE and DATE_WRI TTEN.
Declare MESSACGE as VARCHAR?2 data type with alength of 35 and DATE_WRI TTEN as
DATE datatype. Assign the following values to the variables:

Variable Contents
MESSAGE ‘Thisismy first PL/SQL program’
DATE_WRI TTEN Current date

Store the values in appropriate columns of the TEMP table. Verify your results by querying the
TEMP table.

| NUM_STORE | CHAR_STORE | DATE_STOR
| (This is my first PLSGL Program 24-5EP-01

Oracle9i: PL/SQL Fundamentals Additional Practices -7

6. a Store adepartment number in aiSQL* Plus substitution variable
b. WriteaPL/SQL block to print the number of people working in that department.
Hint: Enable DBMS_QUTPUT iniSQL*Pluswith SET SERVEROUTPUT ON.

old 3 V_DEPTNO DEPARTMENTS department 1d%TYPE = &P DEPTNO,
new 3 V_DEFTNO DEPARTMENTS department 1d%TYPE = 30,
& employee(s) worl for department number 30

PLIZQL procedure successfully completed.

7. WriteaPL/SQL block to declare avariable called v_sal ar y to store the salary of an employee. In
the executable part of the program, do the following:

a. Storean employee namein a iSQL* Plus substitution variable
b. Storehisor her salary inthevariablev_sal ary

c. If thesdary islessthan 3,000, give the employee araise of 500 and display the message
'<Employee Name>'s salary updated' in the window.

d. If thesalary is more than 3,000, print the employee's salary in the format, '<Employee Name>

e. Test the PL/SQL for the following last names:

LAST NAME SALARY
Pat abal | a 4800
G eenberg 12000
Er nst 6000

Note: Undefine the variable that stores the employee' s name at the end of the script.

8. Write a PL/SQL block to store the salary of an employeein an iSQL* Plus substitution variable.
In the executabl e part of the program do the following:

e Cadculatethe annua salary assdary * 12.
» Calculate the bonus asindicated below:

Annual Salary Bonus
>= 20,000 2,000
19,999 - 10,000 1,000
<= 9,999 500

» Display the amount of the bonus in the window in the following format:
‘Thebonusis$....................

Oracle9i: PL/SQL Fundamentals Additional Practices - 8

* Testthe PL/SQL for the following test cases:

SALARY BONUS
5000 2000
1000 1000
15000 2000

Note: These exercises can be used for extra practice when discussing how towork with composite
data types, cursors and handling exceptions.

9. a. WriteaPL/SQL block to store an employee number, the new department number, and the
percentage increase in the salary in iSQL* Plus substitution variables.

b. Update the department ID of the employee with the new department number, and update the
salary with the new salary. Use the EMP table for the updates. Once the update is complete,
display the message, 'Update complete' in the window. If ho matching records are found, display
‘No Data Found’. Test the PL/SQL for the following test cases:

EMPLOYEE_| D | NEW DEPARTMEN | % | NCREASE | MESSAGE
T ID

100 20 2 Updati on
Compl et e

10 30 5 No Dat a
f ound

126 40 3 Updati on
Conpl et e

Oracle9i: PL/SQL Fundamentals Additional Practices - 9

10. Create aPL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire
date in the window in the format shown in the sample output below:

Eochhar earns 17000 and joined the organization on 21-2EF -89
De Haan earns 17000 and joined the organization on 13-JAT-23
PLIEQL procedure successfully completed.

11. Create a PL/SQL block to retrieve the last name and department ID of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE_| D islessthan 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department 1Ds. Using aloop, retrieve
the employee name information and the saary information from the PL/SQL tables and display it in
the window, using DBMS_QOUTPUT. PUT_LI NE. Display these details for the first 15 employeesin
the PL/SQL tables.

Emplovee MName: Eing Department 1d: 90
Emplovee MName: K ochhar Department 1d: 90
Employee Mame: De Haan Department_1d: 90
Emplovee MName: Hunold Department 1d: &0
Employee Mame: Ernst Department 1d: 60
Emplovee MName: Austin Department 1 60
Employee Name: Pataballa Department 1d: &0
Emplovee Mame: Lorentz Department_id: 60
Employvee Name: Greenberg Department 1: 100
Emplovee Mame: Fawet Department 1d: 100
Employvee Name: Chen Department 1d: 100
Emplovee Mame: Sciarra Department 1d: 100
Emplovee Name: Urman Department 1d: 100
Emplovee Name: Popp Department 1d: 100
Emplovee Name: Eaphaely Departiment 1d: 20
PLIZQL procedure successfilly completed.

Oracle9i: PL/SQL Fundamentals Additional Practices - 10

12.

13.

14.

a. Create a PL/SQL block that declares a cursor called DATE_CUR. Pass a parameter of DATE data
type to the cursor and print the detail s of all employees who have joined after that date.

DEFI NE P_H REDATE = 08- MAR- 00

b. Test the PL/SQL block for the following hire dates: 08- MAR- 00, 25- JUN- 97, 28- SEP- 98,
07- FEB- 99.

166 Ande 24-NATE-00
167 Banda 21-APE-00
173 Kutnar 21-APE-00
PLIEQL procedure successfully completed.

Create a PL/SQL block to promote clerks who earn more than 3,000 to thejob title SR CLERK
and increase their salary by 10%. Use the EMP table for this practice. Verify the results by
guerying on the EMP table. Hint: Use a cursor with FOR UPDATE and CURRENT OF syntax.

a. For the exercise below, you will require atable to store the results. Y ou can create the
ANALYSI Stable yoursef or runthel abAp_14a. sql script that creates the table for you.
Create atable called ANALYSI S with the following three columns:

Column Name ENAME YEARS SAL

Key Type
Nulls/Unique
FK Table

FK Column
Datatype VARCHAR2 Nunber Nunber

Length 20 2 8,2

Create a PL/SQL block to populate the ANALYSI S table with the information from the
EMPLOYEES table. Use an iSQL* Plus substitution variable to store an employee’ s last name.

Query the EMPLOYEES table to find if the number of years that the employee has been with the
organization is greater than five, and if the salary isless than 3,500, raise an exception. Handle the
exception with an appropriate exception handler that inserts the following values into the
ANALYSI S table: employee last name, number of years of service, and the current salary.
Otherwise display Not due for a rai se inthewindow. Verify the results by querying the
ANALYSI S table. Use the following test cases to test the PL/SQL block:

LAST_NAME MESSAGE

Austin Not due for a raise
Nayer Not due for a raise
Fripp Not due for a raise
Khoo Due for a raise

Oracle9i: PL/SQL Fundamentals Additional Practices - 11

Oracle9i: PL/SQL Fundamentals Additional Practices - 12

Additional
Practice
Solutions

Additional Practice 1 and 2 Solutions

1. Evauate each of the following declarations. Determine which of them are not legal and explain
why.
a. DECLARE

v_nane, v_dept VARCHAR2(14) ;
Thisisillegal because only one identifier per declaration is allowed.
DECLARE

v_test NUMBER(5) ;
Thisislegal.
DECLARE

V_NVAXSALARY NUMBER(7, 2) = 5000;

Thisisillegal because the assignment operator iswrong. It should be :=.
DECLARE
V_JO NDATE BOOLEAN : = SYSDATE;

Thisisillegal because thereisa mismatch in the data types. A Boolean data type cannot
be assigned a date value. The data type should be date.

2. Ineach of the following assignments, determine the data type of the resulting expression.
a v enmail :=v firstname || to_char(v_enpno);

b.

C.

d.

e.

f.

Character string
v_confirm:= to_date(’ 20-JAN 1999’ , ' DD- MON- YYYY');
Dat e

v_sal := (1000*12) + 500

Nunber

v_test := FALSE

Bool ean

v temp := v_tenmpl < (v_temp2/ 3);
Bool ean

v_var := sysdate;

Dat e

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 3

Additional Practice 3 Solutions

3. DECLARE
v_custid NUMBER(4) := 1600;
V_cust nane VARCHAR2(300) := 'Winen Sports Cub’;
v_new custid NUMBER(3) := 500;
BEG N
DECLARE
v_custid NUVBER(4) := O;
v_custname VARCHAR2(300) := 'Shape up Sports Cub’;
v_new custid NUMBER(3) := 300;
v_new_cust name VARCHAR2(300) := 'Jansports Cub’;
BEG N
v_custid := v_new custid;
v_custnanme := v_custnane || * ' || v_new_custnane;

END, >

v_custid := (v_custid *12) / 10;
@ T

/

Evaluate the PL/SQL block above above and determine the data type and value of each of the
following variables, according to the rules of scoping:

a. Thevaueof V_CUSTI Dat position Lis:
300, and the data type is NUVMBER
b. Thevalueof V_CUSTNAME at position 1is:
Shape up Sports Club Jansports Club, and the data type is VARCHAR2
c. Thevaueof V_NEW CUSTI Dat position 1is:
500, and the data typeisNUVMBER (or | NTEGER)
d. Thevaueof V_NEW CUSTNAME at position 1is:
Jansports Club, and the data typeis VARCHAR2
e. Thevaueof V_CUSTI Dat position 2is:
1920, and the data typeis NUVBER
f. Thevaueof V_CUSTNANME at position 2 is:
Women Sports Club, and the data type is VARCHAR2

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 4

Additional Practice 4 Solutions

4. WriteaPL/SQL block to accept a year and check whether it isaleap year. For example, if the
year entered is 1990, the output should be “1990 is not a leap year”.

Hint: The year should be exactly divisible by 4 but not divisible by 100, or it should be
divisible by 400.

Test your solution with the following years:

1990 Not aleap year
2000 Leap year

1996 Leap year

1886 Not aleap year
1992 Leap year

1824 Leap year

SET SERVEROUTPUT ON

DEFI NE p_year = 1990

DECLARE
V_YEAR NUMBER(4) := &P_YEAR,
V_RENMAI NDER1 NUMBER(5, 2);
V_REMAI NDER2 NUMBER(5, 2);
V_RENMAI NDER3 NUMBER(5, 2);

BEG N
V_REMAI NDERL : = MOD(V_YEAR, 4)
V_REMAI NDER2 : = MOD(V_YEAR, 100) ;
V_REMAI NDER3 : = MOD(V_YEAR, 400) ;

IF ((V_REMAINDERL = 0 AND V_REMAI NDER2 <> 0)
OR V_REMAI NDER3 = 0) THEN

DBVS _OUTPUT. PUT _LINE(V_YEAR || ' is a |leap year’);
ELSE

DBMS_QUTPUT. PUT_LINE (V_YEAR || * is not a |eap year’);
END | F;

END,
/
SET SERVERQUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 5

Additional Practice 5 Solutions

5. a. For the exercises below, you will require atemporary table to store the results. Y ou can either
create the table yourself or runthel abAp_05. sql script that will create the table for you.
Create a table named TEMP with the following three columns:

Column Name NUM_STORE CHAR_STORE DATE_STORE
Key Type
Nulls/Unique
FK Table

FK Column
Datatype Nunber VARCHAR2 Dat e
Length 7,2 35

CREATE TABLE tenp
(num store NUMBER(7, 2),
char _store VARCHAR2(35),
date_store DATE);

b. WriteaPL/SQL block that contains two variables, MESSAGE and DATE_WRI TTEN. Declare
MESSAGE as VARCHAR2 datatype with alength of 35 and DATE_WRI TTEN as DATE data
type. Assign the following values to the variables:

Variable Contents
MVESSAGE Thisismy first PL/SQL program’
DATE_WRI TTEN Current date
Store the values in appropriate columns of the TEMP table. Verify your results by querying
the TEMP table.
DECLARE

MESSAGE VARCHAR2(35) ;
DATE_WRI TTEN DATE;
BEG N
MESSACGE := "This is ny first PLSQ. Program ;
DATE_WRI TTEN : = SYSDATE;
| NSERT | NTO t enp(CHAR_STORE, DATE_STORE)
VALUES (MESSACE, DATE_WRI TTEN) ;
END;
/
SELECT * FROM TEMP;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 6

Additional Practice 6 and 7 Solutions
6. a Store a department number in aiSQL* Plus substitution variable
DEFI NE P_DEPTNO = 30
b. Write a PL/SQL block to print the number of people working in that department.
Hint: Enable DBMS_QUTPUT iniSQL*Pluswith SET SERVEROUTPUT ON.
SET SERVEROUTPUT ON
DECLARE
V_COUNT NUMBER(3) ;
V_DEPTNO DEPARTMENTS. department _i d%YPE : = &P_DEPTNG,
BEG N
SELECT COUNT(*) INTO V_COUNT FROM enpl oyees
WHERE departnment _id = V_DEPTNG,

DBVS _QUTPUT. PUT_LINE (V_COUNT || ' enployee(s) work for
departnment nunber ' || V_DEPTNO);
END;

/
SET SERVEROUTPUT OFF

7. WriteaPL/SQL block to declareavariable called v_sal ar y to store the salary of an employee. In the
executable part of the program, do the following:

a. Store an employee namein a iSQL* Plus substitution variable
SET SERVEROUTPUT ON
DEFI NE P_LASTNAME = Pat abal | a

b. Storehisor her sdary inthev_sal ary variable

c. If thesalary islessthan 3,000, give the employee araise of 500 and display the message
'<Employee Name>'s salary updated' in the window.

d. If the salary is more than 3,000, print the employee's salary in the format, '<Employee Name>

e. Testthe PL/SQL for the last names
Note: Undefine the variable that stores the employee’ s name at the end of the script.
DECLARE
V_SALARY NUMBER(7, 2);
V_LASTNAME EMPLOYEES. LAST_NAMEYYPE;
BEG N
SELECT sal ary | NTO V_SALARY
FROM enpl oyees
WHERE | ast_name = | Nl TCAP(’ &P _LASTNAME') FOR UPDATE of sal ary;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 7

Additional Practice 7 and 8 Solutions
V_LASTNAME : = | NI TCAP(’ &P_LASTNAME') ;
| F V_SALARY < 3000 THEN
UPDATE enpl oyees SET salary = salary + 500

VWHERE | ast _name = | NI TCAP(’ &P_LASTNAME') ;

DBVS_QUTPUT. PUT_LINE (V_LASTNAME || ''’'s salary updated’);
ELSE

DBMS_QUTPUT. PUT_LINE (V_LASTNAME || ' earns ' ||

TO_CHAR(V_SALARY)) ;
END | F;

END;

/

SET SERVEROUTPUT OFF

UNDEFI NE P_LASTNANE

8. WriteaPL/SQL block to store the salary of an employee in an i SQL* Plus substitution variable. In
the executabl e part of the program do the following:

 Calculate the annual salary assalary * 12.
* Calculate the bonus as indicated bel ow:

Annual Salary Bonus
>= 20,000 2,000

19,999 - 10,000 1,000

<=9,999 500

* Display the amount of the bonusin the window in the following format:
‘Thebonusis$.................... ’

SET SERVEROUTPUT ON

DEFI NE P_SALARY = 5000

DECLARE
V_SALARY NUMBER(7,2) := &P_SALARY;
V_BONUS NUMBER(7,2);
V_ANN_SALARY NUMBER(15, 2);

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 8

Additional Practice 8 and 9 Solutions
BEG N

V_ANN SALARY := V_SALARY * 12;
| F V_ANN _SALARY >= 20000 THEN
V_BONUS : = 2000;

ELSI F V_ANN SALARY <= 19999 AND V_ANN SALARY >=10000 THEN
V_BONUS : = 1000;

ELSE
V_BONUS : = 500;
END | F;
DBVS _QUTPUT. PUT_LINE (' The Bonus is $ ' || TO CHAR(V_BONUS));
END;

/
SET SERVEROQUTPUT COFF

9. a WriteaPL/SQL block to store an employee number, the new department number and the
percentage increase in the salary in iSQL* Plus substitution variables.
SET SERVEROUTPUT ON

DEFI NE P_EMPNO = 100
DEFI NE P_NEW DEPTNO = 10
DEFI NE P_PER_| NCREASE = 2

b. Update the department ID of the employee with the new department number, and update the
salary with the new salary. Use the EVP table for the updates. Once the update is compl ete,

display the message, ‘ Update complete’ in the window. If no matching records are found, display
the message, ‘No Data Found'. Test the PL/SQL.

DECLARE
V_EMPNO enmp. EMPLOYEE_| DU YPE : = &P_EMPNG,
V_NEW DEPTNO enp. DEPARTMENT_| DYIYPE : = & P_NEW DEPTNG,

V_PER_| NCREASE NUMBER(7, 2) := & P_PER | NCREASE;
BEG N

UPDATE enp
SET departnment _id = V_NEW DEPTNQ,

salary = salary + (salary *
V_PER_| NCREASE/ 100)

WHERE enpl oyee id = V_EMPNG,
| F SQLY%RONCOUNT = 0 THEN
DBVS_OUTPUT. PUT_LINE (' No Data Found’);
ELSE
DBVS_QUTPUT. PUT_LI NE (' Update Conplete’);
END | F;
END;
/
SET SERVEROUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 9

Additional Practice 10 Solutions

10. Create a PL/SQL block to declare a cursor EMP_CUR to select the employee name, salary, and hire
date from the EMPLOYEES table. Process each row from the cursor, and if the salary is greater than
15,000 and the hire date is greater than 01-FEB-1988, display the employee name, salary, and hire
date in the window.

SET SERVEROQUTPUT ON
DECLARE
CURSCR EMP_CUR | S
SELECT | ast_nane, sal ary, hire_dat e FROM EMPLOYEES;
V_ENAME VARCHAR2(25);
V_SAL NUMBER(7, 2) ;
V_H REDATE DATE;
BEG N
OPEN EMP_CUR,;
FETCH EMP_CUR | NTO V_ENANE, V_SAL, V_HI REDATE;
VH LE EMP_CUR%-OUND
LOOP

| F V_SAL > 15000 AND V_HI REDATE >= TO DATE(’ 01- FEB- 1988’ ,’ DD- MON-
YYYY') THEN

DBVMS_QUTPUT. PUT_LINE (V_ENAME || ' earns ' || TOCHAR(V_SAL)||
and joi ned the organization on ' || TO _DATE(V_H REDATE, ' DD Mon-
YYYY')),

END | F;
FETCH EMP_CUR | NTO V_ENAME, V_SAL, V_HI REDATE;

END LOOP;

CLOSE EMP_CUR;
END;

/
SET SERVERQUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 10

Additional Practice 11 Solutions

11. Create a PL/SQL block to retrieve the last name and department ID of each employee from the
EMPLOYEES table for those employees whose EMPLOYEE | D islessthan 114. From the values
retrieved from the EMPLOYEES table, populate two PL/SQL tables, one to store the records of the
employee last names and the other to store the records of their department IDs. Using aloop, retrieve
the employee name information and the salary information from the PL/SQL tables and display it in
the window, using DBMS_QUTPUT. PUT_LI NE. Display these details for the first 15 employeesin

the PL/SQL tables.

SET SERVEROUTPUT ON
DECLARE
TYPE Tabl e_Enane is table of enpl oyees. | ast name% YPE
| NDEX BY BI NARY_| NTEGER;
TYPE Tabl e_dept is table of enployees. departnent _i d%YPE
| NDEX BY BI NARY_| NTEGER;
V_Tenanme Tabl e_Enane;
V_Tdept Tabl e dept;
i BINARY_I| NTEGER : =0;
CURSOR C Nanedept |'S SELECT | ast_nane, departnent _id from enpl oyees
WHERE enpl oyee id < 115;
V_COUNT NUMBER : = 15;

BEG N
FOR enprec in C_Nanedept
LOOP
i =0 +1;
V_Tenane(i) := enprec.|ast_nane;
V_Tdept (i) := enprec.departnent _id;
END LOOP;
FOR i IN 1..v_count
LOOP
DBMS_QUTPUT. PUT_LI NE (' Enpl oyee Nane: ' || V_Tenane(i) ||
" Departnent_id: ' || V_Tdept(i));
END LOOP;
END;

/
SET SERVERQUTPUT OFF

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 11

Additional Practice 12 Solutions

12. a. Create aPL/SQL block that declares acursor caled DATE CUR. Pass a parameter of DATE data
type to the cursor and print the detail s of all employees who have joined after that date.

SET SERVEROUTPUT ON
DEFI NE P_HI REDATE = 08- MAR- 00

b. Test the PL/SQL block for the following hire dates: 08- MAR- 00, 25- JUN- 97, 28- SEP- 98,
07- FEB- 99.

DECLARE
CURSCOR DATE_CURSOR(JO N_DATE DATE) IS
SELECT enpl oyee_i d, | ast _nane, hi re_dat e FROM enpl oyees
VWHERE HI RE_DATE >JO N _DATE ;
V_EMPNO enpl oyees. enpl oyee_i d%I YPE;
V_ENAME enpl oyees. | ast _nane%l YPE;
V_HI REDATE enpl oyees. hi re_dat e%d YPE;
V_DATE enpl oyees. hire_dat e%dYPE : = " &P_H REDATE' ;
BEG N
OPEN DATE_CURSOR(V_DATE) ;
LOCP
FETCH DATE_CURSOR | NTO V_EMPNO, V_ENAME, V_HI REDATE;
EXI T WHEN DATE_CURSORYNOTFOUND;
DBMS_QUTPUT. PUT_LINE (V_EMPNO || " " || V_ENAME || " ' ||
V_HI REDATE) ;
END LOOP;
END;
/
SET SERVEROQUTPUT OFF;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 12

Additional Practice 13 Solutions

13. Create a PL/SQL block to promote clerks who earn more than 3,000 to SR. CLERK and increase
their salary by 10%. Use the EMP table for this practice. Verify the results by querying on the EMP
table.

Hint: Use acursor with FOR UPDATE and CURRENT OF syntax.

DECLARE
CURSOR C Senior_Cerk IS
SELECT enpl oyee _id,job_id FROM enp
WHERE job_id ="' ST_CLERK AND salary > 3000
FOR UPDATE OF job_id;
BEG N
FOR V_Enrec IN C _Senior_derk
LOOP
UPDATE enp
SET job_id = ' ST_CLERK,
salary = 1.1 * salary
WHERE CURRENT OF C Senior_d erk;
END LOOP;
COW T;
END;
/
SELECT * FROM enp;

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 13

Additional Practice 14 Solutions

14. a For the exercise below, you will require atable to store the results. Y ou can create the ANALYSI S
table yourself or runthel abAp_14a. sql script that creates the table for you. Create atable
called ANALYSI S with the following three columns:

Column Name ENANME YEARS SAL
Key Type
Nulls’'Unique
FK Table

FK Column
Datatype VARCHAR2 Nunber Nunber
Length 20 2 8,2

CREATE TABLE anal ysi s
(enanme Varchar 2(20),
years Nunber(2),
sal Number (8, 2));

b. Create a PL/SQL block to populate the ANALYSI S table with the information from the EMPLOYEES
table. Use an i SQL* Plus substitution variable to store an employee’ slast name.
SET SERVEROUTPUT ON
DEFI NE P_ENAME = Austin

c. Query the EMPLOYEES tableto find if the number of years that the employee has been with the
organization is greater than five, and if the salary isless than 3,500, raise an exception. Handle the
exception with an appropriate exception handler that inserts the following values into the ANALYSI S
table: employee last name, number of years of service, and the current salary. Otherwise display Not
due for a rai seinthewindow. Verify theresults by querying the ANALYSI S table. Test the
PL/SQL block.

DECLARE
DUE_FOR_RAl SE EXCEPTI ON;
V_H REDATE EMPLOYEES. Hl RE_DATEY YPE;
V_ENAVE EMPLOYEES. LAST_NAMEYGYPE := | N TCAP(' & P_ENAME);
V_SAL EMPLOYEES. SALARYYYPE;
V_YEARS NUVBER(2);

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 14

Additional Practice 14 Solutions (continued)

BEG N
SELECT LAST_NAME, SALARY, H RE_DATE
| NTO V_ENAME, V_SAL, V_H REDATE
FROM enpl oyees WHERE | ast _nane = V_ENAME;
V_YEARS : = MONTHS_BETWEEN(SYSDATE, V_HI REDATE) / 12;
|F V_SAL < 3500 AND V_YEARS > 5 THEN
RAI SE DUE_FOR_RAI SE;
ELSE
DBVS_QUTPUT. PUT_LINE (' Not due for a raise’);
END | F;
EXCEPTI ON
VWHEN DUE_FOR_RAI SE THEN
| NSERT | NTO ANALYSI S(ENAME, YEARS, SAL)
VALUES (V_ENAME, V_YEARS, V_SAL) ;
END;
/

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 15

Oracle9i: PL/SQL Fundamentals Additional Practices Solutions- 16

